Network Effects and Social Inequality

Paul DiMaggio1 and Filiz Garip2

1Department of Sociology, Princeton University, Princeton, New Jersey 08544; email: dimaggio@princeton.edu
2Department of Sociology, Harvard University, Cambridge, Massachusetts 02138; email: fgarip@wjh.harvard.edu

Abstract

Students of social inequality have noted the presence of mechanisms militating toward cumulative advantage and increasing inequality. Social scientists have established that individuals’ choices are influenced by those of their network peers in many social domains. We suggest that the ubiquity of network effects and tendencies toward cumulative advantage are related. Inequality is exacerbated when effects of individual differences are multiplied by social networks: when persons must decide whether to adopt beneficial practices; when network externalities, social learning, or normative pressures influence adoption decisions; and when networks are homophilous with respect to individual characteristics that predict such decisions. We review evidence from literatures on network effects on technology, labor markets, education, demography, and health; identify several mechanisms through which networks may generate higher levels of inequality than one would expect based on differences in initial endowments alone; consider cases in which network effects may ameliorate inequality; and describe research priorities.

Keywords
cumulative advantage, threshold models, homophily, externalities, diffusion, spillovers

Annu. Rev. Sociol. 2012. 38:93–118
INTRODUCTION

Students of inequality have long noted the tendency for small initial advantages and disadvantages to develop into greater differences, and for small intergroup differences to become larger (Merton 1968, Jencks & Mayer 1990, DiPrete & Eirich 2006). Students of social networks have long noted the capacity of networks to provide access to valuable resources. This article suggests that these two observations are related in that inequality is aggravated when network effects compound individual-level advantages through the adoption of behaviors that help people get ahead.

This mechanism may operate under the following conditions (which are necessary but, as we discuss below, are not sufficient):

1. A behavior (pursuing a college degree) or transition (migration) or practice (using a productivity-enhancing technology) is likely, if adopted or undertaken, to improve adopters’ current or future well-being.1

2. The probability of adoption is a function of individual endowments and of the extent to which one’s friends and associates have already adopted the practice.

3. Networks are homophilous with respect to individual characteristics associated with adoption, so that likely adopters tend to associate with other likely adopters and likely nonadopters with other probable nonadopters.

Under these conditions, advantages individuals obtain from initial endowments (e.g., financial or cultural resources) may be compounded by network influences, exacerbating intergroup inequality in the adoption of rewarding practices relative to what we would expect based on individual differences alone.2

We find it useful to view such effects as resulting from diffusion processes shaped by networks and initial endowments (Rogers 1995 [2003]). Inequality is exacerbated when an innovation diffuses more broadly within an advantaged than within a disadvantaged group and has positive effects on subsequent welfare. We are concerned both with classic cases of new-product diffusion (e.g., the adoption of new information technologies) and with cases in which diffusion provides a conceptual lens for understanding choices (e.g., about schooling, health behaviors, marriage) that each cohort faces anew.

Although relatively little is known about networks’ impact on population-level inequality, research on network effects, network externalities, homophily, and diffusion processes together establishes its plausibility and provides insights for modeling and empirical research. In the next section, we highlight three main classes of network effects—local network externalities, social learning, and normative influence—any of which, under the right conditions, can exacerbate intergroup inequality. Next, drawing on sociological and economic literatures on network effects on technology adoption, labor markets, migration, demographic transitions, education, health, social

1For simplicity’s sake, we use “practice” below to refer generally to practices, behaviors, and transitions. Because of our interest in inequality, we focus primarily on how networks encourage the adoption of practices that are likely to contribute directly or indirectly to social mobility, lifetime income, health, or other generally desired outcomes. We also consider the role of networks in discouraging the adoption of risky behaviors (e.g., substance abuse or delinquency) that are negative predictors of long-term welfare.

2The mechanisms described in this review generate inequality with respect to the rate and level of adoption of particular beneficial practices. Although we use the shorthand “inequality” for the sake of brevity, our focus is on inequality in rates of adoption of behaviors likely to lead to desirable outcomes, not on those outcomes themselves, which are beyond the scope of this review.
identity, and the avoidance of risky behaviors, we review evidence on network effects, theoretical arguments and formal models, and a few studies focusing directly on the relationship between networks and changes in intergroup inequality in the adoption of advantageous practices. We conclude that homophily is ubiquitous, that network effects on the adoption of beneficial practices reinforce individual-level differences both directly and, at times, through positive statistical interactions between networks and individual advantages, and that some direct evidence supports the view that network effects exacerbate intergroup difference. Next, we describe the scope conditions under which we would anticipate such effects and present a taxonomy of mechanisms by which networks influence behavior, with attention to variations in functional form. We conclude by asking whether network effects might, under some conditions, reduce intergroup inequality and by presenting a research agenda.

HOW NETWORKS INFLUENCE CHOICE

Network effects occur when the probability that an actor will adopt a practice is an increasing function of the number or proportion of persons in the actor’s social network who already have adopted that practice. Such effects work through increases in the utility of a practice to an actor, whether achieved through direct impact on payoff, risk-adjusted return, or social sanctions. At the most abstract level, different kinds of network effects can be modeled and understood using a common framework. For any given practice, ego (i.e., the actor at risk to adopt a practice) has a reservation price (the combination of time, money, and effort) that an actor will pay to adopt a new practice (i.e., the price in terms of time, money, and effort). Reservation price is likely to be different for social learning than for either pure externalities (i.e., those in which advantages flow directly from the size of the network) or normative influence, we find it useful to treat social learning effects as a distinct class of mechanisms. An influential typology (Young 2009) includes normative influence (“social influence”), but restricts it to a “conformity motive”; it reserves “social learning” for information gathered from observation of outcomes for prior adopters, but does not include pure externalities, instead promulgating a third category, contagion, that refers to effortless transmission of social behavior—actually, a pseudocategory based on analogy (to biological epidemics) without specifying a social mechanism through which transmission occurs. Our tripartite distinction is most similar to that in Rossman et al. (2008, pp. 206–7), who distinguish among externalities, information-cascade (one type of what we refer to as social learning), and contagion models (normative influence in our typology).

THE VOCABULARY OF NETWORK EFFECTS

The absence of a generally accepted vocabulary for describing distinctive kinds of network effects is a source of considerable confusion (Liebowitz & Margolis 1994). Some authors define “social learning” as a type of “network externality” because prior adoption of a practice by one’s peers enhances the likely utility to oneself (Sacerdote 2011). Others distinguish between “social learning” and “externalities” more narrowly defined (Hensvik & Nilsson 2011). Some view social learning as a type of “social influence” (Liu et al. 2010), whereas others distinguish sharply between the two (Kohler et al. 2000). Because, as we argue below, the functional form of relationships between network measures and reservation price is likely to be different for social learning than for either pure externalities (i.e., those in which advantages flow directly from the size of the network) or normative influence, we find it useful to treat social learning effects as a distinct class of mechanisms. An influential typology (Young 2009) includes normative influence (“social influence”), but restricts it to a “conformity motive”; it reserves “social learning” for information gathered from observation of outcomes for prior adopters, but does not include pure externalities, instead promulgating a third category, contagion, that refers to effortless transmission of social behavior—actually, a pseudocategory based on analogy (to biological epidemics) without specifying a social mechanism through which transmission occurs. Our tripartite distinction is most similar to that in Rossman et al. (2008, pp. 206–7), who distinguish among externalities, information-cascade (one type of what we refer to as social learning), and contagion models (normative influence in our typology).

Ego/alter: ego is the focal node in a network; alters are the nodes to which ego is connected directly

Reservation price: an adoption threshold, i.e., the price (in money, time, or effort) that an actor will pay to adopt a new practice.

Local network externalities: changes in adoption probability of a practice that are a direct function of the number of adoption of alters in a network; alters are the nodes to which ego is connected directly

Social learning: an adoption threshold, i.e., the price (in money, time, or effort) that an actor will pay to adopt a new practice.

Normative influence: changes in adoption probability of a practice that are a direct function of the number of adoption of alters in a network; alters are the nodes to which ego is connected directly.
LOCAL AND GLOBAL NETWORK EXTERNALITIES

Economists originally viewed network externalities from the perspective of the firm or the economic system, but sociologists and, increasingly, economists now view network effects from the perspective of the potential adopter. Whereas classic work in economics defined “network” either technologically (to refer, e.g., to a railroad, telephone system, or electrical grid) or very generally (to refer to all users of a product, whether or not they are socially connected), sociologists (and, increasingly, economists) focus on social networks comprising specific persons linked by some concrete relation. For present purposes, we refer to externalities deriving from one’s own contacts’ adoption of a practice or technology as “local” (because the networks are specific to ego) and refer to externalities resulting from the sheer number of prior adopters as “global.”

Network Externalities

Network externalities operate when the value of a practice depends on the number of prior adopters (Shy 2001). Network externalities began to receive extensive attention in economics in the 1980s, primarily among industrial-organization scholars interested in how particular firms or technologies lock in a dominant position in their markets (Arthur 1989). Katz & Shapiro’s (1985) classic paper apprehended the importance of externalities for individual choice, positing both direct effects (the larger the network, the greater its value to each user) and indirect effects (dominant technologies attract more complementary products and produce economies in learning and servicing). Telephone systems initially were viewed as natural monopolies in part because of network externalities, as the first to build a large subscriber base would draw its rivals’ customers, who would wish to communicate with as many people as possible (Fischer 1992). (See also the sidebar on Local and Global Network Externalities.) Information and communication technologies, much of the value of which comes from access to one’s network, constitute the classic example of network externalities (Varian & Farrell 2004). The Internet provides many examples: social networking sites like Facebook; auction sites like eBay; and software such as Adobe Acrobat, which dominated the market for document-preparation software by giving Acrobat Reader away for free, thus expanding the number of people an Acrobat user could reach. Although information-technology adoption provides the most striking examples, the value of a choice increases with the size of relevant networks in other domains as well. DeSwaan (2001) argues that network externalities are central to the emergence of regionally dominant languages. And demographers have noted effects on demographic phenomena such as marriage (Drewianka 2003). As members of one’s social network and age cohort marry, the stock of potential mates declines (reducing opportunity cost) and friends become less available as leisure companions or confidants (as they spend more time with married peers). Similarly, divorce may be more attractive as a function of the number of persons in one’s social network already divorced, and therefore sexually and socially available (Aberg 2009).

Social Learning

Social learning effects operate when network peers provide information that increases the utility of a new practice or reduces its cost or risk. (The passage of information through networks often does all three simultaneously.) Network members may provide information that enables one to get more out of a new technology, for example, discovering additional productive uses for an iPad, or to exploit learning opportunities more fully, as when students form study groups to induce greater work effort.
Social learning also influences behavior through effects on cost and, especially, risk. Cost effects may be simple but decisive, as when a friend tells you that a microwave oven is on sale at a cost below your reservation price. Or network-borne information may lead one to raise one’s reservation price owing to a reduction in perceived risk. For example, if network peers have already migrated to a nearby city to look for work, they can help one find cheaper lodging and avoid exploitative working conditions (Garip 2008). If one is uncertain about whether to use a new contraceptive device, speaking with friends who have already used it may reduce uncertainty (Kohler et al. 2001).

Normative Influence

Normative influence does not affect the intrinsic value or cost of a practice, but rather operates through social side payments: rewards bestowed on adopters and sanctions exacted on nonadopters by their peers. Influence may operate through positive or negative sanctions. One’s inclination to recycle, for example, may be reinforced by the positive response of environmentalist friends, or one’s valuation of marriage may increase if one learns that one’s romantic life has become a topic of unsympathetic gossip among one’s married acquaintances. Normative influence does not just encourage the adoption of beneficial practices. It is also important in inducing actors to refrain from adopting potentially harmful practices. A large literature addresses network effects on substance abuse and delinquent behavior among youth (Case & Katz 1991).

RESEARCH BEARING ON NETWORK EFFECTS ON INTERGROUP INEQUALITY

Scholars who have reviewed the literatures on network effects in particular fields have often concluded that such effects cumulate to higher levels of social inequality. In a review of research on health, Pampel et al. (2010) write, “[G]iven that high-SES [socioeconomic status] persons adopt healthy behaviors and associate with other high-SES persons, their networks of social support, influence and engagement promote health and widen disparities.” Similarly, Freese & Lutfey (2011) suggest that network effects may contribute to the greater capacity of high-income people to exploit advances in medical science, causing such advances to widen rather than reduce inequality in health outcomes. Gamoran (2011, p. 112) concludes from a review of the literature on school tracking (a form of induced homophily) that “tracking tends to have no effect on overall academic performance or productivity, but it tends to widen the dispersion of achievement, that is, it increases inequality” Sociologists are not alone in these intuitions: In a review of work in economics on social interactions, Durlauf & Ioannides (2010, p. 459) assert that “endogenous social interactions help amplify differences in the average group behavior.”

In this section, we consider several kinds of evidence that bears on these propositions. For network effects to exacerbate intergroup inequality in adoption of some practice, three things must be true.

First, at the individual level, the probability of adopting a beneficial practice should be a positive function of the financial or cultural resources at a person’s command. In general, financial resources increase a person’s ability to pay, thus raising his or her reservation price. Cultural resources (ordinarily measured as years of formal education) may influence adoption by increasing awareness of new practices (especially of innovations), increasing comprehension of complex innovations, or enabling people to exploit the practices more fully. The positive correlation of SES with most behaviors, resources, and practices that improve people’s life chances is perhaps the most robust and generalizable finding in sociology, so this point need not detain us further.

Second, actors’ social networks must consist of persons similar to themselves with respect to characteristics that predict adoption of the new practice. Homophily—the tendency of persons
to form networks with others to whom they are socioeconomically and demographically similar—has been observed to be ubiquitous across a wide range of contexts. Homophily is characteristic of adult friendship networks (O’Malley & Christakis 2009, Rivera et al. 2010) and the friendship networks of children (Kandel 1978). Socioeconomic and racial homophily have also been observed in marital choice (Rosenfeld 2008, Schwartz & Mare 2005). Homophily can result from structural factors or from choice (McPherson et al. 2001), but either may generate pressures for greater inequality given the presence of network effects. For example, Blossfeld (2009) suggests that educational homogamy has risen because colleges produce educationally homogeneous networks at just the time mate selection becomes salient, whereas young people who move from secondary school to the workforce encounter more diverse networks, leading to less homogamous matches. Because college graduates also earn more, this pattern tends to exacerbate income inequality (Schwartz 2010).

For social networks to produce surplus inequality—i.e., inequality greater than that which individual differences would produce in the absence of network effects—a final necessary (but not sufficient) condition is that adoption of beneficial practices must be positively associated with prior adoption by one’s network peers. We devote the next section to examining the evidence on this point.

The Evidence on Network Effects

Space does not permit us to review extensive literatures on network effects in many fields, nor is it necessary to do so given the availability of useful review essays (see Boyd 1989 on migration; Calvó-Armengol et al. 2009, Sacerdote 2011, and Epple & Romano 2011 on education; Durlauf & Ioannides 2010 on economic research; Marsden & Gorman 2001 on labor markets; Pampel et al. 2010, Pescosolido 1992, and Smith & Christakis 2008 on health; and Sampson et al. 2002 on neighborhood effects). Well-designed studies have found network effects on employment out of college (Marmaros & Sacerdote 2002) and mid-career (Laschever 2005), on schoolteachers’ retirement decisions (Brown & Laschever 2009), on immigrants’ use of transfer programs (Bertrand et al. 2000), on Finns’ stock-market entry (Kaustia & Knüpper 2012), and on CEO compensation packages (Shue 2011). Such studies have also reported network effects on Italian college students’ graduation rates (DeGiorgi et al. 2009), US students’ college performance (Fletcher & Tienda 2009), and other educational outcomes. Research indicates that networks influence major life transitions as well, including childbearing (Bühl & Fratzek 2007, Kuzienko 2006), migration (Massey 1986, Massey & Espinoza 1997, Amuedo-Dorantes & Mundra 2007, Fussell & Massey 2004), marriage (Adamopoulou 2011), and divorce (Aberg 2009). Research has also revealed network effects on such health-related behaviors as contraceptive use (Kohler et al. 2001), participation in family planning programs (Behrman et al. 2008), and smoking cessation (Christakis & Fowler 2008), but not on cancer screening (Keating et al. 2011).

Networks are also implicated in the adoption of risky behaviors (e.g., drug use, truancy, early initiation of sexual intercourse), especially among young people. When, as is usually the case, such behaviors negatively affect subsequent educational and occupational attainment, are negatively correlated with SES, and spread through homophilic networks, network effects may exacerbate inequality. Using data from the National Longitudinal Study of Adolescent Health (Add Health), Card & Giuliano (2011) demonstrate effects of best friends’ behaviors on ego’s initiation of sex, smoking, marijuana use, and truancy. A seminal study of low-income urban youth (Case & Katz 1991) found that parents’ and siblings’ experiences affected young people’s risk of incarceration, drug abuse, and (for girls) early pregnancy. By contrast, a study of college roommates found limited effects of roommate behavior on ego’s drinking and no effect on ego’s drug use or sexual conduct (Duncan et al. 2005).
Research in criminology shows substantial impacts of peer networks on criminal behavior in adolescence and early adulthood (Elliott & Menard 1996, Haynie & Osgood 2005). There is also a large literature demonstrating peer and neighborhood effects on risky behavior among youth that, while interesting, is less than conclusive as to network mechanisms, in that ego’s personal networks are rarely random samples of peers or neighbors. (For a review, see Dishion & Tipsord 2011. For evidence that peer-effect models underestimate true network effects, see Halliday & Kwak 2012.)

To be sure, the literature may overstate network effects. For one thing, one suspects that authors who find network effects are more likely to publish their results than those who do not. Moreover, research on network effects, and a fortiori on peer-group and neighborhood effects, is methodologically challenging, for at least two reasons (Aberg & Hedström 2011, Manski 1993, Harding et al. 2010). First, individuals in the same social network or peer group may be subject to similar unobserved environmental pressures or shocks. Unobserved-variable bias vexes most social-scientific models, of course. Many studies have employed ingenious methods to guard against specification error, e.g., by demonstrating varying outcomes for actors who should be subject equally to environmental effects but differentially to network influences (e.g., Hensvik & Nilsson 2011, Liu et al. 2010). Second, selection into networks is a potential problem if individuals seek out others whose practices they wish to emulate, in which case the intent to adopt a practice produces rather than is caused by networks (Mouw 2002, Shalizi & Thomas 2011). Researchers have addressed this problem by employing fixed-effects models with longitudinal data (a useful if incomplete solution), by undertaking fieldwork to explore the plausibility of endogenous selection (Watkins & Warriner 2003), by employing sensitivity analysis to assess the robustness of particular network effects to varying degrees of confounding (VanderWeele 2011), and by identifying quasi-experimental contexts where ties result from choices that could not plausibly have been influenced by the practice in question (e.g., Marmaros & Sacerdote 2002, Aberg 2009, Laschever 2005). (Manski 1993 mentions a third reason, “the reflection problem,” that stems from the difficulty of allocating influence in a system in which several actors simultaneously influence one another in real time. Although this problem obscures the relative impact of peer behavior and peer attributes at the individual level, it is not relevant to assessing the contribution of network effects to inequality at the population level, so we do not discuss it here.)

Even when endogeneity does exist, the extent to which it is germane to the impact of networks on inequality depends on whether adoption of a new practice merely requires awareness and interest, or if peer support is necessary for that interest to be transformed into behavior. Adoption of a new practice often proceeds in two stages: The actor first becomes aware of the practice and wishes to adopt it; and the actor then turns to peers for assistance in doing so. When adoption is easy, and the actor does not need social support to fulfill the desire to adopt, the analyst may find spurious network effects if the actor prefers to associate with other adopters. When adoption is difficult—where an actor requires assistance to adopt successfully or when a practice’s rewards accrue to an actor by virtue of persistence in a network (e.g., joining a food-buying co-op)—the situation is more complex. In this case, the actor’s decision to adopt is not affected by network ties, as these were formed as a consequence of the actor’s decision. The actual adoption, however, is a product of network effects in that it could not have occurred had the actor not succeeded in

3 Few studies have used longitudinal network data to compare the effects of influence and selection (both entering and leaving networks) on behavioral similarity. Those that have done so have used data from schools and have reached different conclusions (based on different data sets). Cohen (1977), Mercken et al. (2009), and Flashman (2012), for example, find large selection effects in high-school peer groups, whereas McFarland & Pals (2005) find little selection between middle school and early high school.
Peer effects: effects on actor of the behavior of actors in its vicinity (e.g., classroom, organization, or neighborhood)

Network and Peer Interaction Effects

The mere existence of network effects on adoption of a practice (if the network is homophilous with respect to individual characteristics associated with adoption) is sufficient to render it plausible that networks exacerbate intergroup inequality in that practice’s adoption. This will, of course, be the case only if those groups are defined on the basis of characteristics that serve both to increase individual-level odds of adoption and as bases for homophily. Given the wide range of cases for which such characteristics as education, race, or income satisfy these conditions, this is a modest qualification.

An emerging set of network-effects studies goes beyond merely documenting effects, however, to demonstrate that such effects interact with measures of individual advantage such that high-status people benefit from network effects more than their lower-status counterparts. In other words, such studies identify practices for which networks may exacerbate inequality in two distinct ways—first by augmenting the impact of individual endowments and, second, by doing so disproportionately for the already advantaged. This second-level effect is potentially consequential, as it may extend the scope conditions for the inequality-exacerbating mechanisms considerably by suppressing the ability of lower-status members of heterogeneous peer networks to serve as bridges diffusing access to a practice beyond the circle of the initially advantaged.

Intergroup variation in returns to networks has been explored most thoroughly in work on labor markets. Several papers report that the association between using networks to find jobs and job quality is stronger for high-SES than for low-SES workers (Lin 1999, Ioannides & Loury 2004) and for men than for women (Ensel 1979; and see Aberg & Hedström 2011 on stronger neighborhood effects on men’s than on women’s employment). Other evidence indicates that one’s peers’ employment status affects one’s own more strongly for whites than for African Americans. Holzer (1987) argues that between 24% and 38% of the difference in employment rates between white and black youth is attributable to superior returns to the job referral networks of the latter (and see also Bortnick & Ports 1992). Similarly, Korenman & Turner (1996) report that higher returns for whites than blacks to the use of personal networks for job seeking account for a significant share of racial inequality in wages.

Indications that the relatively privileged benefit disproportionately from peer effects even in heterogeneous groups have also been observed in education, although interactions are weaker and less consistent (Epple & Romano 2011). Sacerdote (2011, p. 260) concludes from his literature review that “students at the high end of the ability distribution experience the largest peer effects from high ability peers.” A study of Israeli elementary-school classrooms reports that that the number of exceptional achievers positively affects the learning of high-achieving students but not of other children, whereas the number of unusually low achievers disproportionately affects the performance of low-ability children (Lavy et al. 2007). Exploiting a situation in one large school district in which high numbers of random school reassignments produced a quasi-experimental design, Hoxby & Weingarth (2006) likewise found that the
positive effects of high-achieving peers were concentrated among other high achievers. Hoxby (2000) similarly reported that peer effects on performance operated more strongly within racial groups than between them. By contrast, some studies have found that high-ability peers affect the performance of low- or medium-ability peers as well as one another (Burke & Sass 2008). Unfortunately, all these studies focus on colocation in the same classroom or school, without drawing upon actual network data. Thus, where interactions have been found, it is unclear whether they reflect a disproportionate positive impact of networks on the already advantaged. An alternative interpretation consistent with these results is that network effects, not peer effects, drive achievement and that students sort themselves into homogeneous groups within heterogeneous schools or classrooms (Carrell et al. 2011).

Differential network effects based on SES or ethnicity have been reported in several other domains. In a study of the use of family planning programs in two African countries, Behrman et al. (2008) found that network effects were stronger for women with higher levels of formal education. Several migration studies report that men’s migration choices are influenced more by network alters than are those of women (Curran et al. 2005, Kanaiaupuni 2000) and that men benefit more than women from ties to coethnics in destination (Hagan 1998, Hondagneu-Sotelo 1994). In the domain of health, Christakis & Fowler (2008) report that highly educated friends influence the decision to stop smoking more than less educated friends.

We feature this research because it indicates that, under the right conditions, high-status people benefit disproportionately from network effects not just because they are more likely to have network peers who have already adopted beneficial practices, but furthermore because they are more susceptible to positive influences, even when their peer networks are socially heterogeneous. Indeed, either condition—if individual endowments are associated with having more prior adopters in one’s network or with a higher susceptibility to influence from however many previously adopting network alters one has—would suffice to produce surplus inequality. The combination would boost inequality yet further. Outside of the labor-markets field, evidence on differential influence is scattered, and it is difficult to know whether researchers have tested interaction models but failed to report them owing to negative findings or whether such models are rarely included in analyses. In any event, further study is warranted.

Direct Models of and Evidence on Network Effects on Intergroup Inequality

Thus far we have examined research that bears indirectly on the contribution of networks to inequality in access to or adoption of practices that positively affect one’s life chances. In this section, we discuss a few studies that either model this process or present evidence about changing inequality directly.

We begin with the models, one of the earliest of which is Montgomery’s (1991) social-learning model of a labor market. In this model, employers may recruit workers through referrals or through want ads, workers take jobs through referrals when available and through formal channels otherwise, employers who recruit through referrals pay better wages than those who do not, and employers can observe the productivity of workers ex post but not ex ante, and also assume (correctly, given assumptions of the model) that existing workers’ contacts will be similar to those workers in productivity. Montgomery demonstrates that wage differentials between high-ability and low-ability workers expand over time. Adding social characteristics that are uncorrelated with ability but with respect to which contacts are also homophilous to the model, he demonstrates that if employment rates are lower for members of one group (for example women) at the start, wage inequality will become greater over time. This simple model captures the major outlines of the mechanism in which we are interested and, moreover, could be extended.
to situations in which employers make ex ante assumptions about classes of workers (for example, underestimating the productivity of women and African Americans relative to white men), which would also yield greater inequality over time. Using a more complex model that focuses on the contribution of networks to the quality of the worker/job match, Arrow & Borzekowski (2004) reach similar conclusions.

Calvó-Armengol & Jackson (2004) present a more elaborate finite-state Markov social-learning model of employment in which exogenously provided job information is passed among network members, who act upon it to improve their positions. Agents may be “fired” (randomly) and drop out of the labor market when discounted expected future income falls below the cost of labor-market participation. Employed agents who receive information about job opportunities pass it on to agents to whom they are tied, who pass it on if already employed or take the job if unemployed. Therefore, the greater the percentage of network alters who are employed, the higher is ego’s probability of learning about (and taking) a job. The authors report that “slight differences in initial conditions can lead to large differences in drop-out rates and sustained differences in employment rates” (Calvó-Armengol & Jackson 2004, p. 427). They contend that their model provides insight into long-term differences in labor-market participation by blacks and whites in the United States.

DiMaggio & Garip (2011) present a moving-threshold model of the influence of network externalities on Internet adoption, in which each agent has a reservation price at which it will subscribe to home Internet service. The reservation price is a function of income and the percentage of network alters who have already adopted. Internet price is a declining function of adoption levels. Agents were sampled from the 2002 General Social Survey to produce realistic distributions and covariance of income, race, educational attainment, and social network size. After each period, each agent compares the price of Internet service to its reservation price and adopts or declines to adopt. Adoption occurs because of a price decline to below ego’s reservation price, an increase in ego’s reservation price due to adoptions by network alters, or a combination of both. The model was run without externalities (the impact of percentage of adopters in network was set at 0), with global externalities (any adoption affects all potential adopters equally), and with local externalities (only one’s network alters’ adoptions matter) and five levels of homophily.

Without externalities, adoption never took off and usage rates increased minimally. Diffusion with externalities hewed to the familiar sigmoid curve (starting slow, accelerating, then tapering off). Penetration was greatest under global externalities, with similar results from the model positing local externalities without homophily. As homophily bias increased, the diffusion curve’s slope steepened, but overall penetration declined and intergroup inequality (by race, income level, and education level) increased monotonically. An advantage of the threshold approach (Granovetter 1978) is the ease with which different mechanisms can be modeled by simply changing the network measures and/or the functional form of the equation specifying the network effect on reservation prices.

Such models explicate the ways in which networks may aggravate inequality and even suggest strongly (by articulating inferences based upon relatively well-established findings) that they do so; but they cannot provide direct evidence of an effect. Indeed, relatively few studies have yielded directly relevant empirical
DiMaggio & Garip (2011) produced what may be the only published empirical study that focuses as its principal concern on change in inequality as a function of network effects. The authors studied economically motivated temporary migration from 22 Thai villages to Bangkok and other urban centers between 1972 and 2000, a period during which such migration grew substantially from similarly low levels in all villages. After identifying peer and network effects on migration, the authors demonstrate that the villages where homophily was greatest diverged most markedly from the group mean, exhibiting significantly higher variance (inequality) in 2000 migration rates than villages with less homophilous networks. Consistent with Calvó-Armengol & Jackson’s (2004) employment model, the analyses demonstrate that a combination of network effects and social homophily can generate inequality even when initial differences are very modest. In related work, Curran et al. (2005) found evidence that differences in migration propensities between men and women were augmented by local network effects in homogeneous networks.

Other relevant findings are scattered over several literatures. Goolsbee & Klenow (2002) report increasing divergence (net measurable urban differences) in computer ownership rates in US cities during the 1990s, which they attribute to the effect of network externalities. In a cross-national study of product diffusion, Van den Bulte & Stremersch (2004) find that the relative importance of endogenous (network) effects on adoption as opposed to exogenous effects (e.g., of external shocks or marketing campaigns) on adoption was associated with the extent of social inequality—an intriguing result consistent with the notion that networks aggravate inequality but also with the authors’ interpretation emphasizing heterogeneity in the propensity to adopt. Christakis & Fowler (2008) report polarization of social networks over time with respect to smoking cessation. Shue (2011), exploiting random assignment of Harvard Business School (HBS) students to sections to rule out selection effects, reports that, among students who go on to become CEOs, peer effects increase income variance by 20% to 40% (with variance increasing fastest one year after major HBS reunions). Duflo & Saez (2002) report greater-than-expected variance among libraries in employee participation in retirement savings plans (and in the providers that participants chose) and note that differences were even stronger among groups defined by age, gender, and organizational authority. Thus, models and empirical studies of labor markets, new-product diffusion, migration, economic behavior, and health-related behavior all suggest that network effects exacerbate inequality when groups vary in initial endowments and that they can produce inequality when initial endowments are similar.

We believe we have built a convincing case for the proposition that social networks may exacerbate inequality in the adoption of beneficial practices. Homophily is ubiquitous. Empirical evidence supporting the importance of network effects is widespread in many research fields. Moreover, evidence indicates that the already advantaged not only benefit directly from association with their peers but may, in some cases, be more susceptible to social learning than persons of lower status—so that pure network effects are augmented by interactions between network measures and individual endowments. Formal models demonstrate how the concatenation of homophily and network effects generates intergroup inequality over time, and a limited empirical literature is consistent with the results of these models. We hope that the reader agrees that this evidence is sufficient to establish the plausibility of the proposition that network effects are a significant source of intergroup inequality and to stimulate research into that phenomenon.

FOR WHAT PRACTICES DO NETWORKS AGGRAVATE INEQUALITY THE MOST?

At this point, however, we wish to complicate and qualify this broader argument. To do this, we focus on how characteristics of the practices available for adoption will influence the extent to which network effects exacerbate inequality.
Complex contagion: transmission of behavior requiring contact between >1 prior adopters and an actor at risk to adopt

Simple contagion: transmission of a behavior requiring only one contact between a prior adopter and an actor at risk to adopt

Simple versus Complex Contagion

We have already articulated several scope conditions necessary for social networks to increase inequality in the manner proposed: Actors must be free (given adequate resources and information) to adopt or not adopt a practice that may help them get ahead; adoption must be influenced by social networks; and those networks must be characterized by homophily with respect to individual characteristics positively associated with adoption or subject to random or exogenously determined inequalities in initial adoption rates.

Here we suggest that there may be a fourth scope condition: that the argument applies to what Centola & Macy (2007) refer to as “complex contagions”—contagions for which adoption is a relatively hard sell, such that a potential adopter requires contact with multiple prior adopters before deciding to adopt. The authors contrast complex contagions to simple contagions, characteristic of the flow of highly communicable diseases or of information, when a single contact produces an effect. Simple contagions are efficient; you do not need two people to tell you that milk is on sale at Safeway this week to act on the information. By contrast, complex contagions require reinforcement from two or more trusted associates. Before you sign up for an Occupy Wall Street or Tea Party rally, or move to another state to find employment, you may require encouragement and persuasion from several friends. If we translate Centola & Macy’s (2007, pp. 707–8) typology of network effects to the three mechanisms noted at the beginning of this review, we see that simple contagions are most likely to play a role in social learning processes. Diffusion driven by externalities is necessarily complex (I am unlikely to invest in a communication device with which I could contact only one friend), as are processes driven by normative influence (e.g., most people will need assurance or persuasion from multiple contacts before joining a sect or quitting smoking). We explain in more detail below why we doubt that network effects in simple contagions produce surplus inequality. But the intuition is this: Few persons’ networks are entirely socially homogeneous, and almost everyone has a few contacts different from oneself on at least one or two dimensions. Even if such ties are few, they can facilitate the flow of information between otherwise isolated network neighborhoods, so that practices adopted on the basis of a single contact tend to spread broadly and rapidly.

What Makes a Contagion Complex?

To put it somewhat differently, the more complex the contagion, the greater the extent to which network effects may produce surplus inequality. Several characteristics of a practice render it subject to complex rather than simple contagion.

Risk and uncertainty. The more people doubt a practice’s efficacy or face risk in adopting it, the more reinforcement their choice will require. For example, the practice of international migration should spread by complex contagion because of the risks inherent in moving to a new and potentially dangerous environment (Massey & Espinosa 1997).

Complexity. Practices also vary in the ease with which a novice can pull them off and the social support necessary to do so credibly. Employing a potentially useful technology (e.g., a new software package) may require concentrated peer assistance in the early stages (DiMaggio et al. 2004). Or a practice may be complex due to the social skill it requires, e.g., credibly claiming a new social identity (McFarland & Pals 2005).

Observability. Strang & Soule (1998, p. 269) call attention to the importance of observability. How easy is it to tell if a network peer has adopted a new practice? How effectively can one observe the practice in operation? To what extent can one observe its consequences? Consider, for example, the difference between planting a new crop (relatively observable to other members of an agricultural community)
and using a new method of birth control (relatively unobservable) (Behrman et al. 2002). The lower the probability that a given peer who has adopted will reveal (intentionally or unintentionally) that she or he has done so, the less likely a practice is to spread by simple contagion.

Legitimacy. Rossman (2012) argues that a new practice that is an instance of an already accepted practice (e.g., downloading a tune in an established genre) spreads by simple contagion, whereas a practice that has not yet been fully institutionalized requires more substantial peer support, especially if adoption is unobservable.

Sustainability. Practices also vary in the extent to which, once initiated, they are self-sustaining, in contrast to requiring continual peer support. When network externalities drive adoption (e.g., joining Facebook) or when the key mechanism is normative influence and the behavior is observable, the practice requires ongoing social support. By contrast, having one’s children receive required vaccinations may be more likely to spread by simple contagion (other things equal), as it is a one-time act that is not subject to sustained peer influence.

To summarize, we expect network effects to exacerbate intergroup inequality in the diffusion of a useful practice to the extent that the practice is risky, complex, difficult to observe, weakly institutionalized, and unsustainable without social support.

A TAXONOMY OF NETWORK EFFECTS

The previous section distinguished among types of behaviors, focusing on the characteristics likely to facilitate or impede their spread across network ties. This section focuses on differences among mechanisms of network influence, classifying mechanisms according to the functional forms that best describe the manner in which they shape behavior.

The extent to which network effects exacerbate intergroup inequality may vary, even among the most complex contagions, depending on the mechanisms through which network effects operate. Yet, as Durlauf & Ioannides (2010, p. 458) note, researchers often neglect to specify mechanisms or fail to match measures and functional forms of network influence to their theoretical intuitions. Here we discuss the implications for measurement of the most important mechanisms. The discussion is summarized in Table 1, which lists three primary mechanisms and their major variations (including hybrids), and describes each mechanism’s fingerprint (a distinctive functional form connecting network properties to individual-level effects, by which it may be recognized empirically).

We use mathematical notation to clarify the differences among the three kinds of network effects. For each, we assume that \(y_{it} \) denotes individual \(i \)'s latent reservation price for adopting a practice at time \(t \)

\[
y_{it}^* = b(x_{it}) + f(w_{it}^T y_{it}) + \varepsilon_i \quad i = 1, \ldots, N, 1.
\]

where \(b(x_{it}) \) denotes the contribution of individual characteristics related to adoption and \(\varepsilon_i \) is the error term known to the individual but unobserved by the researcher [researchers often observe the binary adoption outcome \(y_{it} \) (equals 1 if \(y_{it}^* > 0 \) and 0 otherwise), and model it with a logit or probit specification to estimate network effects; Manski (1993) notes the identification problems in this strategy]. \(y_{it} \) is a binary vector of adoption outcomes of all individuals at time \(t \) (where each entry is a function of a corresponding individual’s latent reservation price \(y_{it}^* \)) and \(w_{it} \) is a binary vector that indicates individual \(i \)'s network ties at time \(t \), where nonexisting ties are represented with a zero entry.

1We do not claim that this list is exhaustive, and we recognize that networks induce adoption of many practices through more than one mechanism. To take one example: Having married friends may raise the probability of marriage through externalities (the value of the network once one is married), social learning (from one’s friends experience or help in finding a spouse), and normative influence (social pressure). Or bright and high-status classmates may produce externalities (a peaceful classroom in which the teacher can spend more time on instruction), induce social learning (help in understanding new material), or exert normative influence (encouragement to study or take a difficult course).
Table 1 Types of mechanisms by which networks affect adoption

<table>
<thead>
<tr>
<th>Type of mechanism</th>
<th>Variant</th>
<th>Network effect</th>
<th>Characteristics</th>
<th>Stylized example*</th>
<th>Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure externality
Fingerprint: effect is a function of full network</td>
<td>Linear benefit</td>
<td>Each new adopter adds equal value</td>
<td>Complex, repeated</td>
<td>Food co-op</td>
<td>n of adopters in network</td>
</tr>
<tr>
<td></td>
<td>Declining benefit</td>
<td>Past some point each adopter adds less value</td>
<td>Complex, repeated</td>
<td>Email, social identities</td>
<td>Log n of adopters in network</td>
</tr>
<tr>
<td></td>
<td>Rising benefit</td>
<td>Value derived from interactions among peers, as well as with peers</td>
<td>Complex, repeated</td>
<td>Online user community</td>
<td>Exponential function of n adopters in network</td>
</tr>
<tr>
<td></td>
<td>Competing platforms (hybrid form with normative influence)</td>
<td>Ego must choose between alternatives</td>
<td>Complex, repeated</td>
<td>Excel versus Lotus (1980s)</td>
<td>Percentage of network peers who have adopted each alternative</td>
</tr>
<tr>
<td>Social learning
Fingerprint: effects with thresholds</td>
<td>Awareness</td>
<td>Value obvious, awareness suffices for adoption</td>
<td>Simple, one-time</td>
<td>50%-off sale at supermarket</td>
<td>p of observing prior adoption by at least one network peer</td>
</tr>
<tr>
<td></td>
<td>Peer testimony</td>
<td>Expected value based on thick information from peers</td>
<td>Complex, one-time</td>
<td>Finding a high-quality doctor; opening an IRA</td>
<td>threshold where $n > 1$</td>
</tr>
<tr>
<td></td>
<td>Adoption assistance</td>
<td>Peer input needed for effective adoption</td>
<td>Complex, one-time</td>
<td>Having a child</td>
<td>threshold where $n > 1$</td>
</tr>
<tr>
<td></td>
<td>Ongoing support (hybrid form with pure externalities)</td>
<td>Continued peer input required for continued effectiveness</td>
<td>Complex, repeated</td>
<td>Migrating for work</td>
<td>Log n of adopters in network</td>
</tr>
<tr>
<td>Normative influence
Fingerprint: effect influenced by density of ties among contacts</td>
<td>Critical mass</td>
<td>Sustained positive and negative sanctioning; categorical legitimation through modeling</td>
<td>Complex, repeated</td>
<td>Smoking cessation, dieting</td>
<td>Percentage of prior adopters weighted by density of ties among those adopters</td>
</tr>
<tr>
<td></td>
<td>Competing norms</td>
<td>Contending sanctioning regimes</td>
<td>Complex, repeated</td>
<td>Use of standard versus colloquial language</td>
<td>Difference between percentage of ties observing each norm weighted by density of ties among those peers</td>
</tr>
</tbody>
</table>

*Examples are provided with the hope of illuminating particular mechanisms, but with the understanding that a particular example may prove, as an empirical matter, to be subject to a different mechanism and that one’s network is likely to influence complex and significant choices through more than one mechanism.
Network Externalities

Network externalities exist when the value of a practice increases as a function of the number of prior adopters. This feature—the tendency for each additional adopter to add value to the network and thus increase the size of the network effect—is its fingerprint. Of interest here are local network externalities: cases in which the relevant adopters are those to whom ego is directly tied, as is typical in the case of communications technologies.

Network-externality effects may be (a) a linear function of the number of peers who have adopted previously (e.g., in certain forms of voluntary labor-pooling such as food co-ops); (b) a logarithmic function (if each additional peer over a certain number provides less incremental value than the last), probably characteristic of the value of communications technologies to individual users; or (c) an exponential function (if the value of the network lies not only in ego’s access to each peer, but also in ego’s access to interactions among ego’s peers), typical of user communities and successful online social networks (e.g., Facebook, for its devotees). Given competing technologies, each subject to network externalities (e.g., Windows versus Mac OS, or Excel versus Lotus in the 1980s), one also may observe a mixed mechanism (part externalities, part normative influence) (Brynjolfsson & Kemerer 1996). When observation is difficult, the number of adopters should be multiplied by the probability that ego will be aware of the adoption status of a network tie. Note that because the value of the network is a function of its size, network influences are ongoing and defections from a network reduce its overall value. Under these conditions, members of groups least likely to adopt a practice are also disproportionately prone to abandon it.

To model local externalities, w_T entries (in Equation 1 above) may be weighted by network proximity (e.g., to reflect the probability of observing the adoption outcome of the corresponding alter), in which case, $w_T f(y)$ would equal a weighted sum of observed adopters in an individual’s network. Finally, $f(\cdot)$ can be a linear, logarithmic, or exponential function relating the total number of all or observed adopters in an individual’s network to the individual’s reservation price. (See Brock & Durlauf 2001 for a similar formulation.)

Social Learning

In social learning, adoption occurs when ego becomes aware of a behavioral option and convinced that it is efficacious and entails an acceptable level of risk. Because at some point one has learned enough to make a decision (or has enough social support to sustain it), the fingerprint of social-learning processes is the existence of step functions or thresholds in the relationship between the number of peers who have adopted and the strength of the network effect.

When the payoff of a course of action is obvious, as in instances of simple contagion, social learning may be based on a single contact (so that network effects can be expressed as the probability that at least one network tie will provide information). We suspect, however, that most social learning, at least of practices that are consequential for an actor’s welfare, requires information that is thick with detail and validated by more than one tie (i.e., as in complex contagions). Thus, someone searching for a cancer specialist or considering whether to purchase an electric car is likely, if she or he can, to discuss the options with several experienced peers before making a decision. In this instance, then, action is likely to be triggered when the n of network members who have already adopted a practice (who have used a given doctor or who own a Prius), or who have in some other way learned enough to provide rich information to ego (who have had to find a medical specialist for a loved one, or who work in automotive engineering) has reached a threshold that exceeds
unity. This is also likely to be the case when successful adoption of a practice (e.g., using a new form of birth control or becoming a new parent) requires not only advice but also support during the adoption process itself. Finally, in some instances, when adoption entails a commitment to a new practice that poses recurrent challenges (e.g., migrating from farm to city for work or seeking a professional degree), network effects are likely to be continual and efficacious as some function of the total size of the relevant network, often declining in slope as the network grows larger. In this sense, ongoing forms of social learning related to significant life transitions may be analytically difficult to distinguish from pure network externalities.\footnote{Certain forms of matching processes (Granovetter 1974) can be treated as forms of social learning, albeit ones in which the payoff (a job placement) is the product of a bilateral choice process. In simple information sharing in job-referral networks, ego passes information about an opportunity to a contact, who may use it, drop it, or pass it on. (Boorman & Levitt 1982). In this case, the strength of network effects may approximate a function of the number of persons in ego’s network, adjusted for the probability that each will have useful information, itself a function of their position in broader social networks. In general, alters who are higher status than ego provide better leads (Lin et al. 1981). In some cases, such a process can occur so frictionlessly as to represent a form of simple contagion. By contrast, matching processes that require active brokerage (e.g., vouching for a job candidate or setting up a blind date) represent a more distinct mechanism.}

For purposes of modeling social learning, w_i entries may be normalized by the total network size or weighted by network proximity. In the former case, $w_i^T \cdot y_i$ would equal the percentage of adopters; and in the latter, a weighted sum of adopters in an individual’s network. $f()$ is a step function that obtains a positive value if $w_i^T \cdot y_i$ exceeds a specified threshold, T_i, for individual i.

Normative Influence

A third class of mechanisms, normative influence, works not by affecting a practice’s value directly or by providing information or assistance, but through the application of positive and negative sanctions upon network members. Like pure externalities, normative influence generates complex contagions (it requires the engagement of numerous network alters) and entails ongoing effects. Unlike pure externalities, however, normative influence is a function both of peer support for a course of action and of the density of ties among those peers (on which their ability to exert influence on ego is in part conditional). The relevance of the ego network’s internal structure is the fingerprint of normative influence processes (Haynie 2001, Kohler et al. 2001).

We distinguish here between two types of normative influence. In both, at least some of ego’s network alters attempt to induce ego to adopt a new behavior by providing approval for actions consonant with the behavior and negatively sanctioning inconsistent behavior.\footnote{Some economists contend that networks exert social influence because individuals have a “taste for conformity” (Patacchini & Zenou 2012) that leads them to mimic the majority of their network peers when practices are divided. Although this sometimes may be a useful simplifying assumption, we doubt that such a taste exists, so we do not treat this as a distinct mechanism. Evidence that young people do like to conform, but that the process is more complicated than the simple taste-for-conformity thesis suggests, comes from social psychological work on pluralistic ignorance, which indicates that students adjust their behavior toward what they believe (often incorrectly) to represent the norms of their peers (Prentice & Miller 1993).}

In the first type, ego’s alters are divided between those attempting to induce generally approved behavior (e.g., smoking cessation or dieting) and those who are indifferent but not hostile. Observation of friends’ behavior may also serve to produce a plausibility structure (Berger & Luckmann 1966) for behaviors that might otherwise seem illegitimate or difficult to imagine [e.g., divorce (McDermott et al. 2009)]. In

\footnote{Rossman (2012, pp. 96–112) distinguishes between the diffusion of the notion that a practice is legitimate and the diffusion of the practice itself, contending that an instance of an already institutionalized category (e.g., listening to a popular song in an established genre) will diffuse far more easily than a practice that lacks prior categorical legitimacy (see also Strang & Meyer 1993 and Hsu et al. 2009). Note, however, that a new practice is often legitimated at the societal level, often with assistance from the mass media, rather than separately within specific networks. Local network effects on legitimacy are probably strongest for behaviors that are private and difficult to observe.}
either case—persuasion or legitimacy—through-observation—adoption occurs when the group of alters supporting or modeling change reaches a critical mass (Marwell & Oliver 1993) sufficient to induce change. By contrast, the second type of normative influence entails struggle between two sets of opposing network alters, each applying positive and negative sanctions to sway ego to its side (e.g., political partisans). In the former case, adoption occurs when the percentage of network peers supporting a practice reaches some critical mass. In the latter, the probability of adoption of a practice is a function of the difference in the proportion of network alters adhering to each option. In each case, the relevant percentages must be weighted by the density of ties within each group, as better acquainted peers will be better able to coordinate their influence. As Centola & Macy (2007, p. 711) have written, the distinction between number of alters and percentage of alters “reflects an underlying (and often hidden) assumption about the influence of nonadopters. Fractional thresholds model contagions in which both adopters and nonadopters exert influence, but in opposite directions In contrast, numeric thresholds model contagions in which nonadopters are irrelevant.”

Under normative influence, the argument of \(f() \), \(w^T_i y_i \) is replaced by \(w^T_i y_i - u^T_i z_i \). Here, \(y_i \) indicates a subset of adopters who are passionate about inducing a practice and \(z_i \) indicates a subset of nonadopters who are passionate about preventing the practice. \(w_i \) and \(u_i \) are binary vectors that indicate individual \(i \)’s network ties at time \(t \) to the subsets of passionate adopters and nonadopters, respectively, where nonexisting ties are represented with a zero entry. \(w_i \) and \(u_i \) entries are typically normalized by the respective network size and potentially weighted by the respective network density. (One might also model heterogeneity into the network, with influence of alters varying with their tie strength to ego or network centrality.) Similar to the social learning case, \(f() \) is a step function, which obtains a positive value if \(w^T_i y_i - u^T_i z_i \) exceeds a specified threshold, \(T_i \), for individual \(i \). Note that in the absence of polarization on the practice, \(z_i = 0 \), and \(f() \) takes \(w^T_i y_i \) as the input.

Mechanisms implicated in complex contagions of beneficial behavior in networks characterized by homophily are likely to exacerbate intergroup inequality, and different mechanisms are likely to do so in different ways. Young (2009) derives the implications of several mechanisms for the shape of diffusion curves (see also Rossman et al. 2008), but under limiting assumptions (an infinite population and random ties) and without attention to implications for inequality. Clear specification of network mechanisms is a necessary first step, but understanding how different mechanisms shape inequality will require additional modeling and empirical research.

CAN NETWORK EFFECTS REDUCE INEQUALITY?

Thus far, we have focused exclusively on mechanisms by which networks may produce higher levels of inequality than one would expect based on differences in individual endowments. We have noted that for this to occur, high-status people must have an initial advantage in adopting a beneficial practice; networks must be characterized by homophily; and the probability of adoption by any actor must be increased by the prior adoptions of his or her network peers. It follows from this that networks may reduce inequality under two conditions: first, if initial advantage with respect to a beneficial practice is negatively correlated with SES or other measures of privilege (inverted advantage), and, second, if homophily is insufficient to amplify initial advantages.

Inverted Advantage

By inverted advantage we refer to cases in which a group that is subject to discrimination, social isolation, or both acquires a niche that becomes profitable or prestigious. Stylized examples include the success of French Canadians in hockey (Belanger 1996), of African Americans in basketball and rap music (Edwards 1979),
Correlations among status parameters: the degree to which measures of social status or social advantage overlap, with high correlations limiting and low correlations facilitating intergroup contact and mobility.

Small worlds: large networks characterized by densely connected subgraphs, sparsely connected to one another by bridging ties.

Limited Homophily
Cases of inverted advantage are relatively few and may affect intergroup inequality trivially, if at all. By contrast, cases in which network homophily is insufficient to bias adoption of beneficial practices toward the initially advantaged may be more important, more interesting, and more susceptible to policy intervention. Departures from homophily in networks occur when ties are formed on the basis of complementary attributes (gender in heterosexual marriage) or skills (in organizational teams); when actors intentionally form ties to alters who are different from themselves (e.g., in order to benefit from social learning or externalities); or because salient status characteristics are imperfectly correlated (as is almost always the case).

Weak correlations among status parameters are most likely to reduce inequality in the case of simple contagions in small worlds. When adoption of a beneficial practice spreads through simple contagion—when a single contact is sufficient to induce action—network effects, even given high levels of homophily, are unlikely to exacerbate inequality. First, as Blau (1977) demonstrated, as long as status and identity dimensions with respect to which networks are homophilous (e.g., education, income, or race) are incompletely correlated, homophilous choice with respect to any one dimension will bring one into contact with actors who vary on others. Consequently, some network ties serve as bridges among groups differentiated by relative privilege.

Second, such patterns are likely to generate small worlds—global networks characterized by concentrated regions of densely connected actors united by bridging ties that facilitate the rapid spread of information (Watts 1999). When contact with a single prior adopter is sufficient to induce action (i.e., when costs of adoption are low and benefits evident) and the strength of network effects does not depend upon ego’s status, practices may move across intergroup and status boundaries more quickly than they would diffuse based on individual differences alone, even if high levels of homophily produce relatively dense and homogeneous ego networks. Consistent with this view, Golub & Jackson’s (2011) computational model reveals no impact of homophily on the flow of information through a network, but indicates that homophily significantly impedes consensus formation (a process analogous to complex contagion). Different combinations of homophily bias and adoption thresholds (the number of contacts required before a practice is adopted) are likely to have varying effects on inequality. Identifying the tipping points at which network effects on inequality turn negative is an important research priority (see further discussion in sidebar entitled Modeling Homophily Bias).

A variant of this may occur when networks provide assistance to their members in learning about and obtaining good jobs. In such matching processes, the probability that any one of ego’s contacts will provide useful information is a function, first, of that actor’s position in the
broader social structure (i.e., of the probability that he or she has access to information useful to ego) and, second, of the probability that he or she is inclined to use that information to assist ego (Smith 2005). This second condition produces what might be called the “paradox of weak ties”: As Granovetter (1974) argued, acquaintances to whom job-seekers are weakly tied may produce the most useful information precisely because they are more likely to be aware of new opportunities than are ego’s close friends; yet the very acquaintances who can help most may be least willing to take the risk of vouching for a potential employee. We suspect that under certain conditions, the paradox of weak ties may generate greater equality than would be observed based on individual differences alone. The reason for this is that an agent seeking a job or other match may obtain the most effective assistance from “weak ties,” who are ordinarily less sociodemographically similar to ego than those to whom ego is strongly attached (Rivera et al. 2010). Put another way, network effects that work through matching processes are especially likely to involve sociodemographically different network alters. When status differences between match-makers and match-takers are significant, and high-status alters are willing to use their information or contacts to help lower-status associates, networks could moderate intergroup inequality. Additional research is necessary to identify the network structures and labor-market conditions for which this is the case.

PRIORITIES FOR RESEARCH ON NETWORK EFFECTS ON INEQUALITY

Six research priorities strike us as especially important:

1. Specifying mechanisms and testing alternative specifications. A first priority is greater rigor in specifying the mechanisms through which effects occur, identifying likely effects on the basis of both theory and, when possible, fieldwork (Watkins & Warriner 2003), and comparing the results of models based on alternative specifications, in order to identify the mechanisms that are most important for the diffusion of particular classes of phenomena. Several fine papers compare two potential mechanisms, but accumulation of knowledge is impeded by the absence of standard nomenclature.
and by the absence of systematically broader comparisons.

2. Employing computational models to understand better the implications for social inequality of different network-effect mechanisms. We can use modeling to identify the conditions under which network effects most severely exacerbate inequality as well as the conditions under which they may ameliorate it, to tease out interactions between types of mechanism and types and degrees of homophily, and to investigate mixed forms in which externalities are both local and global. As demonstrated by Calvó-Armengol & Jackson’s (2004) recommendation to focus resources on particular clusters and neighborhoods of the poor (to produce a critical mass for change processes that could radiate to other networks), such research can produce not only fundamental scientific understanding but policy-relevant knowledge as well.

3. Conducting empirical research on network effects with appropriate data in a variety of contexts and on adoption of a range of goods and practices. By appropriate data we mean, first, data on actual network ties [as opposed to data on copresence (as in the peer effects literature), which may or may not serve as a proxy for interaction]; and, second, data with repeated observations of social networks, adoption of particular beneficial practices, and change in intergroup inequality. Such studies should use case-specific inferential reasoning to ask not just “are there effects?” but “what mechanisms produce these effects?” and test both for network effects on the probability of adoption and network effects on returns to adoption, as well as for differences in the slope of these effects for different kinds of actors.

4. Differentiating among types of relationship. While limited availability of appropriate data often leads researchers to abstract away differences among types of ties, the few studies that attend to such differences suggest that differences are consequential. How does the influence of kin differ from that of friends or coworkers (Christakis & Fowler 2008)? Under what conditions are weak ties more influential than strong (Kreager & Haynie 2011)? When do unreciprocated friendship ties matter (Faris & Ennett 2010)?

5. Studying interactions between networks and institutions. Some institutional configurations may dampen the ability of social networks to exacerbate inequality: For example, networks may be less important to labor-market outcomes when jobs are plentiful and equal opportunity rules enforced than when labor markets are weak and discrimination tolerated; networks may have weaker effects on technology adoption if technologies are made widely available in such public settings as community centers or libraries; networks may matter less for access to government services when agencies invest more in outreach; and networks may have less influence on investment decisions when employee investment accounts are governed by opt-out (as opposed to opt-in) decision rules. Conversely, networks may sometimes interact with institutional factors to amplify long-term increases in inequality: Johnson & Raphael (2009) demonstrate that the interaction of incarceration policies with racial homophily in sexual networks accounts for most of the black-white difference in HIV infection rates. Similarly, individuals who benefit from network effects in high school are more likely to attend elite institutions that provide them with even richer social networks, which augment their advantages yet further.¹⁰

¹⁰We thank Wendy Rahn for the investment example, Rucker Johnson for the HIV example, and Eric Hilt for the point about elite education.
6. Exploring cases in which network effects may reduce inequality, with attention to implications for public policy. Such cases may enable us to develop programs to reduce inequality by influencing networks or, alternatively, by providing functional equivalents to social networks, in order to ameliorate some disadvantages that low-SES persons face in accessing new technologies, new health knowledge, or desirable educational opportunities.

SUMMARY POINTS

1. Social network effects on the adoption of practices that help people get ahead (or on risky behaviors that may impede mobility) may under certain conditions increase intergroup inequality.

2. They are likely to do so when high-SES individuals are more likely, based on individual resources, to adopt beneficial practices (or less likely to adopt harmful practices) and when networks are characterized by homophily with respect to SES.

3. Despite methodological challenges, much research in both sociology and economics demonstrates robust network effects on many behaviors related to schooling, labor-market participation, health, economic choices, demographic transitions, substance abuse, and delinquent behavior.

4. Some research suggests that the strength of network effects may be greater for actors with initial advantages, thus reinforcing the tendency of network effects to exacerbate inequality.

5. A small number of studies demonstrate network effects associated with increasing inequality in some practice between actors in different villages, cities, or organizations.

6. Under some conditions, network effects may ameliorate inequality.

FUTURE ISSUES

Future research should endeavor to

1. Specify mechanisms and test alternative specifications.

2. Employ computational models to understand better the implications for social inequality of different network-effect mechanisms.

3. Conduct research on the impact of network effects on inequality with appropriate data (with repeated observations of network ties, adoption of beneficial practices, and change in intergroup inequality).

4. Differentiate among types of relationships.

5. Study ways in which institutions condition the impact of network effects on inequality.

6. Explore cases in which network effects may reduce inequality.

DISCLOSURE STATEMENT

The authors are not aware of any affiliations, memberships, funding, or financial holdings that might be perceived as affecting the objectivity of this review.
ACKNOWLEDGMENTS

We are grateful to Damon Centola and Gabriel Rossman for helpful feedback on an earlier draft of this paper, to Daniel Nagin for several valuable conversations, and for scholars and staff at the Russell Sage Foundation for invaluable feedback on an oral presentation of these ideas, including helpful written feedback from Delia Baldassarri, Naomi Gerstel, Eric Hilt, Rucker Johnson, Jennifer Lee, Betsy Paluck, and Wendy Rahn. Fellowship support from the Russell Sage Foundation and sabbatical leave from Princeton University are gratefully acknowledged. All deficiencies are authorial.

LITERATURE CITED

Fussell E, Massey DS. 2004. The limits to cumulative causation: international migration from Mexican urban areas. *Demography* 41:151–71

Contents

Prefatory Chapters
My Life in Sociology
 Nathan Glazer .. 1

The Race Discrimination System
 Barbara Reskin .. 17

Theory and Methods
Instrumental Variables in Sociology and the Social Sciences
 Kenneth A. Bollen .. 37

Rational Choice Theory and Empirical Research: Methodological
 and Theoretical Contributions in Europe
 Clemens Kroneberg and Frank Kalter 73

Social Processes
Network Effects and Social Inequality
 Paul DiMaggio and Filiz Garip 93

Youth Political Participation: Bridging Activism and Electoral Politics
 Dana R. Fisher .. 119

Brokerage
 Katherine Stovel and Lynette Shaw 139

Group Culture and the Interaction Order: Local Sociology
 on the Meso-Level
 Gary Alan Fine .. 159

Resolution of Social Conflict
 Robin Wagner-Pacifici and Meredith Hall 181

Toward a Comparative Sociology of Valuation and Evaluation
 Michèle Lamont .. 201

Construction, Concentration, and (Dis)Continuities
 in Social Valuations
 Ezra W. Zuckerman ... 223
Institutions and Culture

A Cultural Sociology of Religion: New Directions
Penny Edgell ... 247

Formal Organizations

Status: Insights from Organizational Sociology
Michael Sauder, Freda Lynn, and Joel M. Podolny 267

Outsourcing Social Transformation: Development NGOs as Organizations
Susan Cotts Watkins, Ann Swidler, and Thomas Hannan 285

Political and Economic Sociology

The Arc of Neoliberalism
Miguel A. Centeno and Joseph N. Cohen 317

Differentiation and Stratification

Economic Insecurity and Social Stratification
Bruce Western, Deirdre Bloome, Benjamin Sosnaud, and Laura Tach 341

The Sociology of Elites
Shamus Rahman Khan ... 361

Social and Economic Returns to College Education in the United States
Michael Hout ... 379

Individual and Society

Race Relations Within the US Military
James Burk and Evelyn Espinoza 401

Demography

The Future of Historical Family Demography
Steven Ruggles .. 423

Causes and Consequences of Skewed Sex Ratios
Tim Dyson .. 443

Marital Instability and Female Labor Supply
Berkay Özcan and Richard Breen .. 463

Urban and Rural Community Sociology

Urbanization and the Southern United States
Richard Lloyd ... 483

Making a Place for Space: Spatial Thinking in Social Science
John R. Logan ... 507
Sociology and World Regions

Islam Moves West: Religious Change in the First and Second Generations

David Voas and Fenella Fleischmann ... 525

Indexes

Cumulative Index of Contributing Authors, Volumes 29–38 547
Cumulative Index of Chapter Titles, Volumes 29–38 551

Errata

An online log of corrections to Annual Review of Sociology articles may be found at
http://soc.annualreviews.org/errata.shtml
ANNUAL REVIEWS
It’s about time. Your time. It’s time well spent.

New From Annual Reviews:

Annual Review of Organizational Psychology and Organizational Behavior

Volume 1 • March 2014 • Online & In Print • http://orgpsych.annualreviews.org

Editor: Frederick P. Morgeson, The Eli Broad College of Business, Michigan State University

The Annual Review of Organizational Psychology and Organizational Behavior is devoted to publishing reviews of the industrial and organizational psychology, human resource management, and organizational behavior literature. Topics for review include motivation, selection, teams, training and development, leadership, job performance, strategic HR, cross-cultural issues, work attitudes, entrepreneurship, affect and emotion, organizational change and development, gender and diversity, statistics and research methodologies, and other emerging topics.

Complimentary online access to the first volume will be available until March 2015.

TABLE OF CONTENTS:

• An Ounce of Prevention Is Worth a Pound of Cure: Improving Research Quality Before Data Collection, Herman Aguinis, Robert J. Vandenberg
• Burnout and Work Engagement: The JD-R Approach, Arnold B. Bakker, Evangelia Demerouti, Ana Isabel Sanz-Vergel
• Compassion at Work, Jane E. Dutton, Kristina M. Workman, Ashley E. Hardin
• Constructively Managing Conflict in Organizations, Dean Tjosvold, Alfred S.H. Wong, Nancy Yi Feng Chen
• Coworkers Behaving Badly: The Impact of Coworker Deviant Behavior upon Individual Employees, Sandra L. Robinson, Wei Wang, Christian Kiewitz
• Delineating and Reviewing the Role of Newcomer Capital in Organizational Socialization, Talya N. Bauer, Berrin Erdogan
• Emotional Intelligence in Organizations, Stéphane Côté
• Employee Voice and Silence, Elizabeth W. Morrison
• Intercultural Competence, Kwok Leung, Soon Ang, Mei Ling Tan
• Learning in the Twenty-First-Century Workplace, Raymond A. Noe, Alena D.M. Clarke, Howard J. Klein
• Pay Dispersion, Jason D. Shaw
• Personality and Cognitive Ability as Predictors of Effective Performance at Work, Neal Schmitt
• Perspectives on Power in Organizations, Cameron Anderson, Sebastien Brion
• Psychological Safety: The History, Renaissance, and Future of an Interpersonal Construct, Amy C. Edmondson, Zhike Lei
• Research on Workplace Creativity: A Review and Redirection, Jing Zhou, Inga J. Hoever
• Talent Management: Conceptual Approaches and Practical Challenges, Peter Cappelli, JR Keller
• The Contemporary Career: A Work–Home Perspective, Jeffrey H. Greenhaus, Ellen Ernst Kossek
• The Fascinating Psychological Microfoundations of Strategy and Competitive Advantage, Robert E. Ployhart, Donald Hale, Jr.
• The Psychology of Entrepreneurship, Michael Frese, Michael M. Gielnik
• What Was, What Is, and What May Be in OP/OB, Lyman W. Porter, Benjamin Schneider
• Where Global and Virtual Meet: The Value of Examining the Intersection of These Elements in Twenty-First-Century Teams, Cristina B. Gibson, Laura Huang, Bradley L. Kirkman, Debra L. Shapiro
• Work–Family Boundary Dynamics, Tammy D. Allen, Eunae Cho, Laurenz L. Meier

Access this and all other Annual Reviews journals via your institution at www.annualreviews.org.

ANNUAL REVIEWS | Connect With Our Experts
Tel: 800.523.8635 (US/CAN) | Tel: 650.493.4400 | Fax: 650.424.0910 | Email: service@annualreviews.org
New From Annual Reviews:

Annual Review of Statistics and Its Application
Volume 1 • Online January 2014 • http://statistics.annualreviews.org

Editor: Stephen E. Fienberg, Carnegie Mellon University
Associate Editors: Nancy Reid, University of Toronto
Stephen M. Stigler, University of Chicago

The Annual Review of Statistics and Its Application aims to inform statisticians and quantitative methodologists, as well as all scientists and users of statistics about major methodological advances and the computational tools that allow for their implementation. It will include developments in the field of statistics, including theoretical statistical underpinnings of new methodology, as well as developments in specific application domains such as biostatistics and bioinformatics, economics, machine learning, psychology, sociology, and aspects of the physical sciences.

Complimentary online access to the first volume will be available until January 2015.

TABLE OF CONTENTS:

- A Systematic Statistical Approach to Evaluating Evidence from Observational Studies, David Madigan, Paul E. Stang, Jesse A. Berlin, Martijn Schuemie, J. Marc Overhage, Marc A. Suchard, Bill Dumouchel, Abraham G. Hartzema, Patrick B. Ryan
- The Role of Statistics in the Discovery of a Higgs Boson, David A. van Dyk
- Brain Imaging Analysis, F. DuBois Bowman
- Statistics and Climate, Peter Guttorp
- Climate Simulators and Climate Projections, Jonathan Rougier, Michael Goldstein
- Probabilistic Forecasting, Tilmann Gneiting, Matthias Katzfuss
- Bayesian Computational Tools, Christian P. Robert
- Bayesian Computation Via Markov Chain Monte Carlo, Radu V. Craiu, Jeffrey S. Rosenthal
- Build, Compute, Critique, Repeat: Data Analysis with Latent Variable Models, David M. Blei
- Structured Regularizers for High-Dimensional Problems: Statistical and Computational Issues, Martin J. Wainwright
- High-Dimensional Statistics with a View Toward Applications in Biology, Peter Bühlmann, Markus Kalisch, Lukas Meier
- Next-Generation Statistical Genetics: Modeling, Penalization, and Optimization in High-Dimensional Data, Kenneth Lange, Jeanette C. Papp, Janet S. Sinsheimer, Eric M. Sobel
- Breaking Bad: Two Decades of Life-Course Data Analysis in Criminology, Developmental Psychology, and Beyond, Elena A. Erosheva, Ross L. Matsueda, Donatello Telesca
- Event History Analysis, Niels Keiding
- Statistical Evaluation of Forensic DNA Profile Evidence, Christopher D. Steele, David J. Balding
- Using League Table Rankings in Public Policy Formation: Statistical Issues, Harvey Goldstein
- Statistical Ecology, Ruth King
- Estimating the Number of Species in Microbial Diversity Studies, John Bunge, Amy Willis, Fiona Walsh
- Dynamic Treatment Regimes, Bibhas Chakraborty, Susan A. Murphy
- Statistics and Related Topics in Single-Molecule Biophysics, Hong Qian, S.C. Kou
- Statistics and Quantitative Risk Management for Banking and Insurance, Paul Embrechts, Marius Hofert

Access this and all other Annual Reviews journals via your institution at www.annualreviews.org.